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A B S T R A C T

It is well understood that transverse magnetic (TM) polarized optical beams could not be considered by the
FFT-BPM because of the presence of the mixed derivatives of the magnetic field and refractive index in the
relevant wave equation. Such mixed derivatives could be resolved by transforming the TM problem to an
equivalent TE one via an "equivalent refractive index" formalism. Unfortunately, if the refractive index of
the original TM problem has step-like discontinuities along the optical confinement direction (transverse to
the propagation direction), the "equivalent index" in the transformed TE problem will exhibit a Dirac-delta
distribution at the planes of these discontinuities because the "equivalent index" involves second derivative of
the inverse of the original refractive index of the TM problem. The Dirac-delta distribution could be eliminated
by approximating the step-like original refractive index by a smoothed one, and hence the derivative in the
equivalent index could be evaluated analytically as well as numerically; this eliminates the spike-like behavior
of the equivalent index at the plane of the discontinuities. In this paper, we present a wide variety of smoothing
functions that exist in the literature and assess their effects on the final numerical results of the problem under
consideration. The comparative study presented here will help the interested researchers when deciding which
smoothing function is appropriate for a specific problem.
. Introduction

Miniaturized optical component are taking a forefront place in
anotechnology. Unfortunately, the development of such components
s impeded by the diffraction limit. Nevertheless, surface plasmonics,
ightly bound to the interface between a metal and a dielectric, offer
viable way to circumvent the diffraction limit of optical energy con-

inement within nanoscale guiding structures and devices [1]. We can
ay that, surface plasmon-based circuits present a key component able
o merge photonics and electronics at the nanoscale. That is, plasmonic
aveguides are on the top of light guides that strongly confine optical
nergy with low propagation losses [2–5]. In fact, the advancement
n the field of light manipulation and enhancement on subwavelength
cale, relies heavily on the development of powerful design and sim-
lation methods, as well as new characterization techniques. finite
ifference frequency domain (FDFD) and Finite difference time domain
FDTD) are popular simulation methods used for modeling the plas-
onic waveguide [6,7]. The majority of the simulations are focusing

n the modal characterization of such waveguide [8]. In this paper
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we present the FFT-BPM to investigate the sub-wavelength plasmonic
structures and configurations. It is well understood that, the excitation
of surface plasmon wave must use transverse magnetic (TM) polarized
optical beams, which could not be considered by the FFT-BPM in
its classical form, because of the presence of the mixed derivatives
of the magnetic field and refractive index in the relevant TM wave
equation [9]. This could be resolved by transforming the TM problem to
an equivalent TE one via an ‘‘equivalent refractive index’’ formalism [9,
10]. This eliminates the mixed derivatives in the resulting TE wave
equation. However, the equivalent index still involves derivatives of
the original step-like refractive index of the waveguide. This introduces
a ‘‘spike-like’’ singularity in the equivalent index which prevents its
numerical evaluation unless a well-behaved smoothing function is used
to approximate the original refractive index. Many functions exist in
the literature [3,4,9–11]. An assessment of the behavior of a variety of
smoothing functions is presented for comparative purposes.
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2. Analytical considerations

Recalling that the wave equation in the TM case for the magnetic
field 𝐻𝑦 (x, z) in a y-invariant structure takes the form:

∇2𝐻𝑦(𝑥, 𝑧) + 𝑘20𝑛
2(𝑥)𝐻𝑦(𝑥, 𝑧) −

1
𝑛2(𝑥)

𝜕𝑛2(𝑥)
𝜕𝑥

𝜕𝐻𝑦(𝑥, 𝑧)
𝜕𝑥

= 0 (1)

where, the free space wavevector 𝑘𝑜 = 2𝜋
𝜆 and 𝜆 is the free space

avelength, ∇2 = 𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑧2
and n(x) is the refractive index profile

of the waveguiding structure. In Eq. (1) the main problem facing the
applicability of the traditional FFT-BPM is the third term involving
the product of the derivatives of the field and the refractive index
profile [9]. Hoekstra et al. [12] and Poladian et al. [13] suggested a
transformation of the problem from TM to a TE one via the following
simple field transformation:

𝑈 (𝑥, 𝑧) = 𝐻𝑦(𝑥, 𝑧)∕𝑛(𝑥) (2)

Upon substitution of Eq. (2) in Eq. (1), the resulting TE wave
equation for U(x,z) takes the form:

[∇2 + 𝑘2𝑜𝑛
2
𝑒𝑞(𝑥)]𝑈 (𝑥, 𝑧) = 0 (3)

where the equivalent refractive index is defined as:

𝑛2𝑒𝑞(𝑥) = 𝑛2(𝑥) −
𝑛(𝑥)
𝑘2𝑜

𝜕2

𝜕𝑥2
( 1
𝑛(𝑥)

) (4)

Eq. (4) is now amenable to be evaluated numerically. However,
the refractive index profile n(x) of the step-index waveguides should
be smoothed cautiously to prevent the transverse derivative term
𝜕2𝑥(1∕𝑛(𝑥)) singularity in Eq. (4). A variety of functions were used [3,4,
9–11] to approximate such step-like refractive index profiles.

3. Smoothing functions

3.1. The sigmoid function

Historically, the first function suggested to smooth the refractive
index profile was sigmoid and presented by Hoekstra et al. [12] and
Yamauchi et al. [14]. The later pointed out that the choice of the
steepness parameter in the sigmoid function is very sensitive in concern
with power conservation [14]. Obviously, the second term in Eq. (4)
can be written as:
𝑛(𝑥)
𝑘2𝑜

𝜕2

𝜕𝑥2
( 1
𝑛(𝑥)

) = 1
𝑘20

{− 1
𝑛(𝑥)

𝜕2𝑛(𝑥)
𝜕𝑥2

+ 2[ 1
𝑛(𝑥)

𝜕𝑛(𝑥)
𝜕𝑥

]2} (5)

The basic sigmoid function takes the form:

𝑛𝑠𝑖𝑔 = 1
1 + 𝑒−𝑎(𝑥−𝑥𝑜)

(6)

where, a is the steepness parameter which plays a vital role in the
numerical stability of the calculations. The first and second derivatives
of the sigmoid function with respect to x can be written as:

𝜕𝑥𝑥(𝑛𝑠𝑖𝑔) =
𝑒−𝑎(𝑥−𝑥𝑜)

1 + 𝑒−𝑎(𝑥−𝑥𝑜)
= 𝑛𝑠𝑖𝑔(1 − 𝑛𝑠𝑖𝑔) (7)

𝜕2
𝑥
(𝑛𝑠𝑖𝑔) = (𝜕𝑥(𝑛𝑠𝑖𝑔))(1 − 2𝑛𝑠𝑖𝑔) (8)

Substituting by Eqs. (7) and (8) into Eq. (5) and simplifying yields:

𝑛𝑠𝑖𝑔(𝑥)

𝑘2𝑜

𝜕2

𝜕𝑥2
( 1
𝑛𝑠𝑖𝑔(𝑥)

) = 1
𝑘20

{𝑛𝑠𝑖𝑔 − 1} (9)

Finally, the equivalent refractive index takes the form:

𝑛2
𝑒𝑞
= 𝑛2𝑠𝑖𝑔 −

1
𝑘20

{𝑛𝑠𝑖𝑔 − 1} (10)

From this equation, the sigmoid function is stable as the right side is
lways positive, i.e. 𝑛2𝑠𝑖𝑔 > 𝑛𝑠𝑖𝑔 − 1∕𝑘20. Fig. 1 shows the sigmoid function
hat approximates the step-index waveguide with air core (𝑛 = 1),
𝑐𝑜

2

Fig. 1. The sigmoid function with different ‘a’ value.

silver cladding (𝑛𝑐𝑙 = 0.3970 -j11.4) and width 𝑤𝑝 = 50 nm. The
smoothed index profile of such waveguide takes the form:

𝑛𝑠𝑖𝑔(𝑥) = 𝑛𝑐𝑙 −
𝛥𝑛1

1 + 𝑒−𝑎(𝑥−𝑤𝑝∕2)
+

𝛥𝑛1
1 + 𝑒−𝑎(𝑥+𝑤𝑝∕2)

, 𝛥𝑛1 = 𝑛𝑐𝑜 − 𝑛𝑐𝑙 , 𝑎 = 1∕𝛥𝑥

(11)

Where 𝛥x is the transverse sampling step size. In Fig. 1, the steep-
ess parameter ‘a’ is varied to show its effect on the slope of the
moothed index profile at the core-cladding interface. As the value of
a×𝛥x’ decreases, the function becomes smoother. Fig. 1 depicts the
waveguide with 𝛥x =22 nm.

3.2. The arctangent function

The arctangent smoothing function has been presented for the first
time in a study of the Goos–Hänchen shift in TM polarization [9,11].
The step-like index profile at 𝑥 = 0 is thus approximated by:

𝑎𝑟𝑐 (𝑥) = 𝑛2 + {𝛿𝑛[0.5 +
tan−1(𝑥∕𝑎)

𝜋
]} (12)

Where 𝑛2 is the ambient (low-index) medium, ‘a’ is the steepness
parameter which can take on small values compared to the transverse
sampling step size 𝛥x. It describes the steepness of the transition of n(x)
from 𝑛2 in x < 0 to (𝑛2+𝛿𝑛) =𝑛1 in x ≥ 0. This is obvious, since as a→0,
the 𝑛𝑎𝑟𝑐 (𝑥) tends to a sharp step change from 𝑛1 for x ≥ 0 to 𝑛2 for x <
0. Inserting Eq. (12) in Eq. (4) we get the equivalent index profile 𝑛2𝑒𝑞
as:

𝑛2
𝑒𝑞
(𝑥) = 𝑛2𝑎𝑟𝑐 −

𝑛𝑎𝑟𝑐 (𝑥)
𝑘2
0

⎡

⎢

⎢

⎣

2(𝛿𝑛)2

𝑛3
𝑎𝑟𝑐
(𝑥).𝜋2𝑎2.(1 + 𝑥2

𝑎2
)2

+ 2𝑥𝛿𝑛

𝑛2
𝑎𝑟𝑐
(𝑥).𝜋𝑎3.(1 + 𝑥2

𝑎2
)2

⎤

⎥

⎥

⎦

(13)

Fig. 2 depicts the arctangent function in a waveguide with the
same parameters as in the sigmoid function case. Thus, the smoothing
function takes the form:

𝑛𝑎𝑟𝑐 (𝑥) = 𝑛1 + 𝛥𝑛1[0.5 −
tan−1((𝑥 −𝑤𝑝∕2)∕𝑎)

𝜋
]

+ 𝛥𝑛2[−0.5 +
tan−1((𝑥 +𝑤𝑝∕2)∕𝑎)

𝜋
] (14)

The steepness parameter ‘a’ is varied to show the steepness of the
core boundaries. ‘a’ is normalized to 1/𝛥x value, as the product ‘a/𝛥x’
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Fig. 2. The arctangent function with different ‘a’ value.

decreases, the function becomes steeper in contrary to the sigmoid
smoothing function.
3.3. The star function

we adopted the Smooth Transition Autoregressive (STAR) func-
tion [4] to approximate the refractive step-index profile 𝑛𝑝𝑎(x). Accord-
ingly, the STAR function assumes the following form:

𝑛𝑝𝑎(𝑥) = 𝑛𝑚 +
𝑛𝑚𝑒

−(𝑎𝑊𝑝∕2) + 𝑛𝑑𝑒𝑎𝑥

𝑒−(𝑎𝑊𝑝∕2) + 𝑒𝑎𝑥
−

𝑛𝑚𝑒
(𝑎𝑊𝑝∕2) + 𝑛𝑑𝑒𝑎𝑥

𝑒(𝑎𝑊𝑝∕2) + 𝑒𝑎𝑥
(15)

where, ‘a’ is the parameter (its unit is the inverse of the unit of x) that
describes the steepness of the function 𝑛𝑝𝑎. Fig. 3, depicts the smoothed
profile 𝑛𝑝𝑎(x) for different values of ‘a’.
3.4. The flat-top function

To the best of our knowledge, the flat-top (super-Gaussian) smooth-
ing function is presented for the first time to approximate the refractive
step-index profile of a step-index waveguide. Accordingly, the 𝑛𝑓𝑡(x)
function assumes the following form:

𝑛𝑓𝑡(𝑥) = 𝑛𝑐𝑙 + 𝛥𝑛𝑒(𝑥∕𝑤𝑝)2
𝑛

(16)

Where, 𝑛 = 1,2,3.., and 𝛥n=n𝑐𝑜-n𝑐𝑙. Fig. 4 illustrates the flat-top
smoothing function that approximates the step-index profile of the
waveguide considered in the previous sections.

Evidently, as ‘n’ increases the function tends to be an abrupt step
that changes from 𝑛𝑐𝑜 to 𝑛𝑐𝑜+𝛥n.
4. Comparison between smoothing functions: stability and power
conservation

4.1. Equivalent refractive index:

Fig. 5 shows the refractive index profile of a waveguide with
𝑤𝑝=300 nm, 𝑛𝑐𝑜 = 3.477, and 𝑛𝑐𝑙 = 1. Using different smoothing
functions and the parameters summarized in Table 1. We shall consider
the guided mode power to assess the effect of the different smoothing
functions on the stability of calculations. Fig. 6 depicts the numerical
spikes at the boundaries (core/cladding interface and core/substrate
interface) due to the second derivative of (1/n(x)). These numerical
artifacts produce erroneous profile as in the case of star function, or
fictitious complex values of the equivalent index, which result in an
attenuated or amplified field in dielectric (lossless) waveguides.

Whilst, the sigmoid function is smooth at the boundaries without
numerical spikes, due to the beneficial exact recurrence relation as

derived in Eq. (10).

3

Table 1
The summary of the steepness parameters for the different smoothing
functions.

The smoothing function The steepness parameter

Sigmoid a=2/dx
Arctan a=0.25dx
Star a=1/dx
Flat-top n=2

Fig. 3. The star function with different ‘a’ value.

Fig. 4. The flat-top function with different ‘n’ value.

Fig. 5. The absolute refractive index profile |n(x)| for different smoothing functions
with at ‘a’ value.
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Fig. 6. The equivalent refractive index profile 𝑛𝑒𝑞(x) for different smoothing functions.

Fig. 7. The normalized guided power of different refractive index profiles 𝑛𝑒𝑞(x) for
different smoothing functions.

4.2. Power stability

The second important characteristic of smoothing functions is the
propagated power of TM mode, which must be stable [8,13]. Fig. 7
depicts the normalized propagated power in a dielectric waveguide.
As shown, the sigmoid function with the equivalent refractive index
calculated from Eq. (10) is stable. However, the other functions are
not stable beyond some short propagation distance. The numerical
evaluation of 𝜕2(1∕𝑛(𝑥))∕𝜕𝑥2 around the core boundaries generates an
ccumulated erroneous built-up field 𝜕2(1∕𝑛(𝑥))∕𝜕𝑥2 [14] while some

steepness parameter values result in a complex equivalent index. Con-
sequently, the argument of the phase correction operator of the BPM
framework becomes complex i.e.:

𝑄𝑥 = exp{−𝑗𝛥𝑧𝑘0(𝑛𝑒𝑞 − 𝑛𝑜)}

= exp{−𝑗𝛥𝑧𝑘0(𝑟𝑒𝑎𝑙(𝑛𝑒𝑞) − 𝑛𝑜)} exp{±𝛥𝑧𝑘0(𝑖𝑚𝑎𝑔(𝑛𝑒𝑞) − 𝑛𝑜)} (17)

Hence, the propagated power is amplified (or attenuated) erro-
neously. Evidently, the STAR function starts to upswing from the
beginning (not shown in the figure) as the STAR function is very
sensitive to the steepness parameter relative to the other functions.

5. Numerical results

5.1. Waveguide facet

For comparison, a dielectric waveguide terminated by air were
studied using a TM polarization mode. The inset of Fig. 8, depicts
4

Fig. 8. The power reflectivity of waveguide facet comparison curve between
FSRM [17], Vassallo [16], and proposed FFT-BPM method.

the geometry of the problem under consideration where a three-layer
dielectric slab waveguide occupying the half-space z<0 is abruptly
erminated by air at 𝑧 = 0. As shown, 𝑛𝑐𝑜 = 3.6 is the waveguide
ore refractive index and its width h varies from 1∼900 nm, and
urrounded by a symmetric cladding of refractive index 𝑛𝑐𝑙 = 𝑛𝑐𝑜 (1-
). The power reflectivity is calculated [15] where 𝛿 = 3%, and 10%,

and the free space wavelength 𝜆𝑜 = 0.86 μm. As shown in Fig. 8 the
power reflectivity compared with Vassallo [16] and FSRM [17], the
curves reveal a general good agreement between the proposed method
and other methods.

5.2. Plasmon mode excitation in MIM waveguide

As a test of the method, we consider a metal dielectric metal (MIM)
waveguide with 𝑊𝑝 = 50 nm (single mode at wavelength 1.55 μm)
excited, at z=0, with a y-polarized Gaussian beam having a full 1/e
width 𝑊𝐺 = 250 nm. Fig. 9(a) depicts a 3-D plot of the field from 𝑧 = 0
o 𝑧 = 20 nm. In the immediate vicinity of the incidence plane 𝑧 = 0,
he plasmonic mode profile is well established after few nanometers,
nd Fig. 9(b) shows the color contour plot corresponding to Fig. 9(a).

.3. Plasmon mode excitation in Kretschmann configuration

An extremely narrow subwavelength rectangular pulse is used for
he efficient resonant excitation of the TM0mode as shown in the inset
f Fig. 10(a). The waveguide is made of asymmetric layers: glass–silver–
ir (Kretschmann configuration). The pulse is incident at the resonance
ngle corresponding to surface plasmon TM0 mode. The parameters as
ollowing:

The parameter The value The parameter The value
The sampling
interval 𝛥x

0.5 nm The step size 𝛥z 0.5 𝛥x

The resonance
angle 𝜃𝑝

42.26◦ The glass index of
refraction ng

1.5

The refractive
index of silver

0.157-j4 The light
wavelength

0.633 μm

The total
propagation
distance

430 nm The total number
of sampling points
along the x-direction
N

215

The pulse width 100 nm The plasmon guide 100 nm

𝑊𝑟 width 𝑊𝑝
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Fig. 9. (a) Gaussian beam incident on a MIM waveguide at z=0. The fundamental mode
profile TM0 is rapidly established few nanometers away from the incidence plane. (b)
trong light-confinement within the core of the MIM guide during the establishment
f the modal field of the guide.

The plane wave component in the angular spectrum of the rect-
ngular pulse corresponding to that resonance has a 𝑘𝑥𝑝 value equal
o 𝑘0𝑛𝑔cos𝜃𝑝 = 10.82 μm−1; this corresponds to a 𝑘𝑧𝑝 component
𝑘0𝑛𝑔sin𝜃𝑝 = 10.34 μm−1. This component should be equal to the real
part (𝛽𝑟) of the complex propagation constant of the TM0 mode. The
numerical solution of the eigenvalue equation of that mode of the
insulator metal insulator (IMI) waveguide [18], gives an effective index
𝑛𝑒𝑓𝑓 = 𝛽𝑟 /𝑘0 = 1.031, which agrees with the value 𝑘𝑧𝑝∕𝑘0 = 1.036.
The rapid growth of the fundamental plasmonic mode is depicted in
Fig. 10 b, which shows the evolution of the magnetic field along the
propagation direction z.

To test the proper behavior of the evanescent waves associated with
the excitation problem, a deeper consideration of these types of waves
is needed. The angular spectrum of these evanescent waves has 𝑘𝑥
values greater than 𝑘0𝑛0 (where 𝑛0 is the reference refractive index of
he homogeneous medium used in the BPM algorithm). Accordingly,
he longitudinal component 𝑘𝑧 of the wave vector corresponding to this

range (𝑘𝑥 > 𝑘0𝑛0) is written as [19]:

𝑘 =
√

𝑘2𝑛2 − 𝑘2 = −𝑗
√

𝑘2 − 𝑘2𝑛2 (18)
𝑧 𝑜 𝑜 𝑥 𝑥 𝑜 𝑜

5

Fig. 10. Excitation of the TM0 mode of the plasmonic guide by a subwavelength
narrow rectangular pulse. The pulse width and the silver film thickness are equal to
100 nm.

Hence, the evanescent waves decay along the propagation direction
since the phase factor varies over the propagation step 𝛥z as:

𝑒−𝑗𝑘𝑧𝛥𝑧 = 𝑒−𝛥𝑧
√

𝑘2𝑥−𝑘2𝑜𝑛2𝑜 (19)

Thus, the inhomogeneous field 𝐾 𝑖 of the evanescent waves con-
tributes to the total propagated field during the propagation step 𝛥z
via a decaying part of the form [19]:

𝐾 𝑖(𝑥, 𝑧) = 1
2𝜋 ∫

|𝑘𝑥|>𝑘𝑜𝑛𝑜
𝑘(𝑘𝑥)𝑒𝑗𝑘𝑥𝑥𝑒

−𝛥𝑧
√

𝑘2𝑥−𝑘
2
𝑜𝑛

2
𝑜 𝑑𝑘𝑥 (20)

This guarantees the proper decay of the evanescent waves in the
propagation direction. Fig. 11(a), depicts the magnitude of 𝐾 𝑖(x,z)
along the propagation direction z. The fast decay of that field is
noticeable as well in the contour plot Fig. 11(b).

5.4. Plasmon waveguide facet

Fig. 12 shows the power reflectivity (a) and power transmissivity (b)
of MIM waveguide coated with a single dielectric layer, as function
of the coating layer thickness. The coating layer thickness is varied
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Fig. 11. Evolution of the inhomogeneous component 𝐾 𝑖 of the total field when a
ectangular subwavelength pulse excites the fundamental mode TM0 of the plasmonic

guide as shown in the inset of Fig. 10(a). The pulse has the same width (100 nm) as
the core of the plasmonic guide.

from 1 to 800 nm. The MIM waveguide core refractive index 𝑛co =
1.515, the metal cladding refractive index 𝑛cl = 0.397018 - j11.9856.
The fundamental modal field is calculated by solving numerically the
corresponding eigenvalue equations [18]. Whilst 𝛽𝑝 is the propagation
constant of the TM0 mode of the plasmonic waveguide, hence, the
plasmonic mode effective index𝑛𝑒 = (𝛽𝑝∕𝑘0). The coating layer has an
index equal to the square root of the ‘‘real part ’’ of the plasmonic mode
effective index real(n𝑒), which is equal to 1.230598 at a wavelength
𝜆𝑜 = 1.55 μm. Theoretically, the oscillation in the power reflectivity and
power transmissivity are akin of the well-known response of a Fabry–
Perot resonator [20–22]. Fig. 12 a and b depict a periodicity of the
order 𝜆/[2×real(n𝑒)]≈0.59 μm.

6. Conclusion

Classical FFT-BPM could not deal with plasmonic and subwave-
length structure which is a TM problem in nature. So, different smooth-
ing functions are investigated to convert the TM problem to an equiva-
lent TE one. A variety of subwavelength structures have been presented
and studied. We claim that a judiciously chosen smoothing function will
render the traditional FFT-BPM more versatile to consider nano scale
waveguiding structures involving metals and dielectrics. This will be
very useful to the computational and assessment of many complicated
subwavelength nanostructures.
6

Fig. 12. The power reflectivity (a) and power transmissivity (b) of MDM waveguide
coated with single dielectric material as function of the coating layer thickness.
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